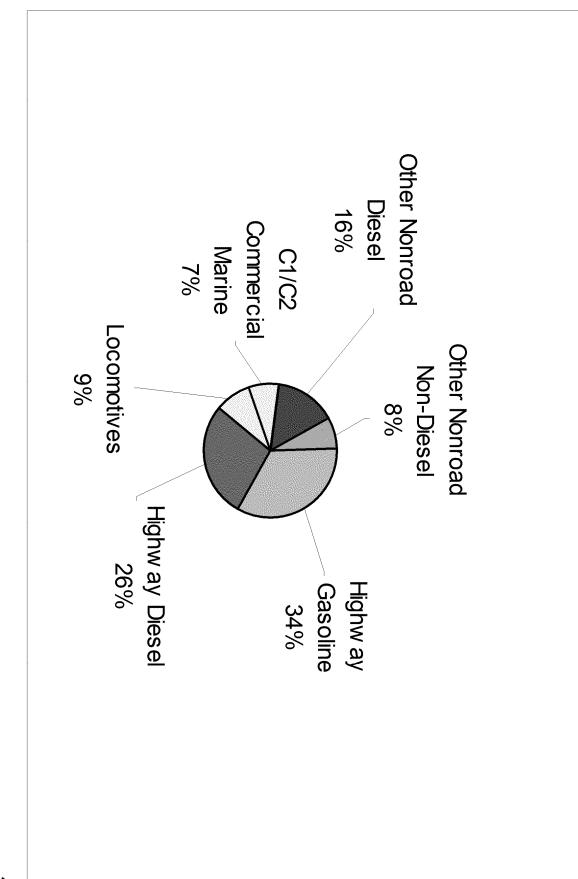


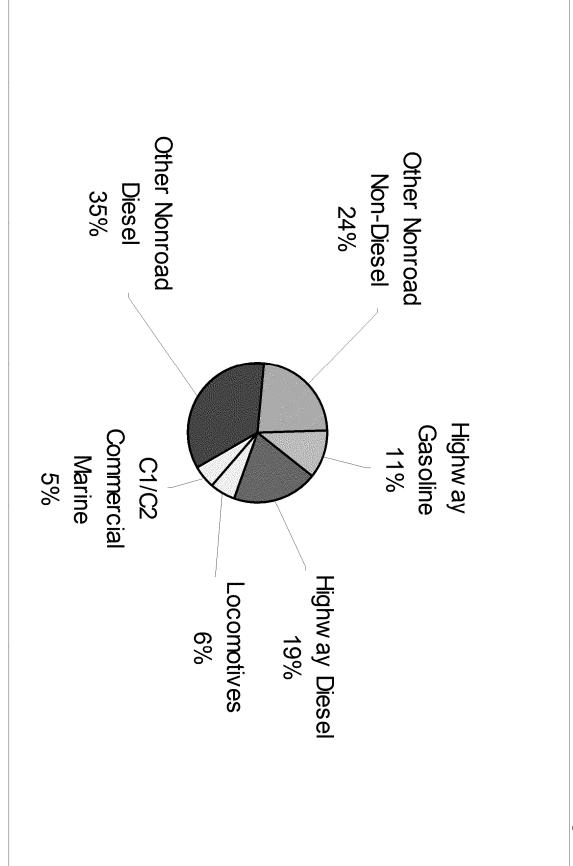
Emissions Test (CBET) Program Collaborative Biodiesel

<u>Proposal</u>


March 27, 2007

Program Objective

engines Conduct a scientific study to determine the impact of biodiesel on exhaust emissions from diesel


- Assess impacts of key factors:
- Engine technology
- Engine load / test cycle
- Biodiesel feedstock / content
- Base fuel properties
- Engage a broad spectrum of stakeholders
- Coordinate with CARB to ensure compatibility and synergy between CBET Program and proposed CARB Biodiesel Emissions Study

2007 US Mobile Source NOx Inventory

ယ

2007 US Mobile Source PM Inventory

4

Highway Diesel NOx Inventory

Total:	2007	2002 - 2006	1994 - 2001	1991 - 1993	pre-1991	ועו ו כווטט	MV Doriod	
14.6	0.8	5.8	5.7	0.8	1.5	Class 6&7	% Contribution	2007
73.4	3.5	23.3	31.0	6.6	9.0	Class 8	ribution	

Total:	2010 - 2012	2007 - 2009	2002 - 2006	1994 - 2001	pre-1994	IVI I GIIOG	MV Deried	
14.5	0.7	2.5	4.9	4.7	1.8	Class 6&7	% Contribution	2012
72.0	2.9	11.0	20.0	25.9	12.4	Class 8	ribution	

Total:	2010 - 2017	2007 - 2009	2002 - 2006	1995 - 2001	pre - 1995	ועו די פווסמ	MV Dorind	
14.8	2.6	2.3	4.4	4.0	1.4	Class 6&7	% Contribution	2017
70.4	11.1	10.4	18.4	21.7	8.8	Class 8	ribution	

Highway Diesel PM Inventory

,	68.6	15.6	Total:
	0.7	0.2	2007
	24.7	5.8	2002 - 2006
	13.8	3.7	1994 - 2001
	5.7	1.5	1991 - 1993
	23.7	4.4	pre -1991
	Class 8	Class 6&7	IVI - GIOG
	% Contribution	% Cont	MV Deried
		2007	

Total:	
15.6	
68.6	

1		_						
Total:	2010 - 2012	2007 - 2009	2002 - 2006	1994 - 2001	pre -1994	WIT EIROG	MV Dariad	
15.6	0.8	0.5	5.6	3.7	5.0	Class 6&7	% Contribution	2012
66.9	3.3	2.0	23.5	13.2	24.9	Class 8	ribution	

	2010 - 2017	2007 - 2009	2002 - 2006	1995 - 2001	pre - 1995	IVI I	MV Doriod	
Total:	2017	2009	2006	2001	1995	SILOG	riod.	
17.1	4.0	0.6	6.7	4.1	1.8	Class 6&7	% Contribution	2017
66.7	17.0	2.4	27.7	14.5	5.2	Class 8	ribution	

of highway diesel PM inventory will

be produced by Class 6&7 and

Class 8 truck engines

Between 2007 and 2017, 82-84%

2002 Highway Diesel NOx Inventory: Rural vs. Urban 50 states, DC, PR, VI

100	1,709,003	100	1,788,096	100	3,497,099	Total:
4.0	67,920	3.0	54,407	3.5	122,326	BUSES
76.2	1,302,194	81.5	1,457,390	78.9	2,759,584	HHDDV
12.6	215,045	10.2	182,614	11.4	397,659	MHDDV
3.1	53,545	2.4	43,748	2.8	97,293	LHDDV
3.3	56,902	2.3	41,754	2.8	98,657	2BHDDV
0.5	9,076	0.3	5,033	0.4	14,109	LDDT
0.3	4,322	0.2	3,150	0.2	7,472	LDDV
%	tons/year	%	tons/year	%	tons/year	Cidoo
ท	Urban	ral	Rural)C, PR, VI	50 states, DC, PR, VI	Class
		/entory	NOx Inventory			\/ohiclo

US NOx emission inventories for rural and urban areas are approximately equal

% Contribution

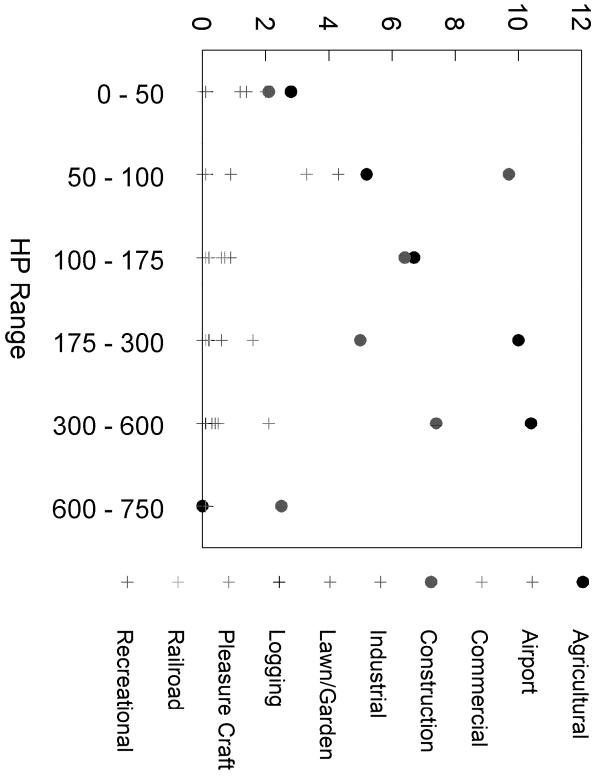


Figure 1: 2017 Nonroad Diesel NOx Inventory

 ∞

% Contribution

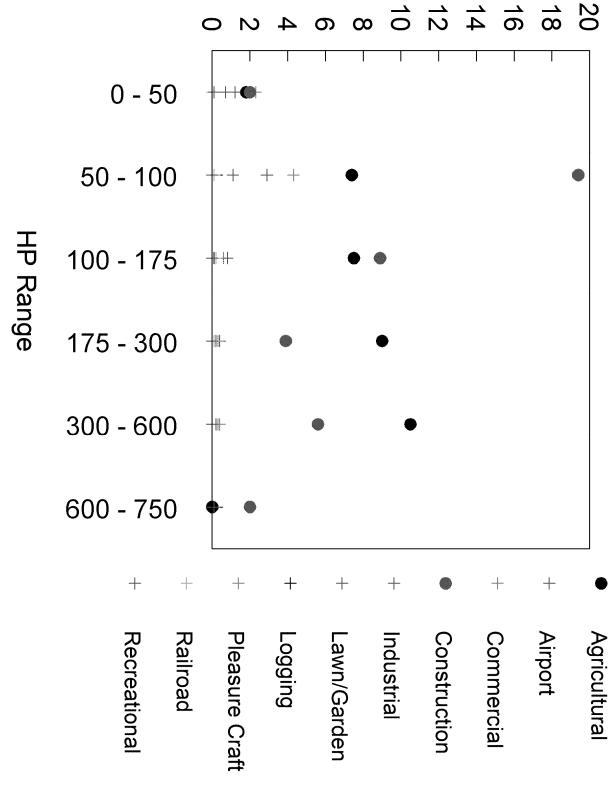


Figure 2: 2017 Nonroad Diesel PM Inventory

ဖ

Nonroad Diesel NOx Inventory Agriculture, Construction and Mining Sectors

Total: 13.1	2006 - 2007 1.5	1997 - 2005 6.3	pre -1997 5.3	MIT FEIRS 50 - 100 HP 100 - 175 HP 175 - 300 HP	MV Period % C	2007
15.4	1.7	8.1	5.6) - 175 HP	% Contribution	
18.6	1.9	10.3	6.4	175 - 300 HP		
2	2(Г

	တ	9	3	4	U		
Total:	2011 - 2012	2006 - 2010	1997 - 2005	pre -1997	N - GIOO	MV Dariod	
13.9	1.1	3.6	5.9	3.4	50 - 100 HP		21
14.9	1.3	4.2	6.3	3.1	50 - 100 HP 100 - 175 HP 175 - 300 HF	% Contribution	2012
17.3	1.2	5.2	7.5	3.4	175 - 300 HP		

5.3 4.7 3.0 15.0		5.3 4.1 3.3 14.9	1997 - 2005 2006 - 2010 2011 - 2017 Total:
	2.0	2.2	pre -1997
175 - 3	50 - 100 HP 100 - 175 HP 175 - 300 HP	50 - 100 HP	IVI FEIIOG
	% Contribution		MV Doriod
	2017	2(

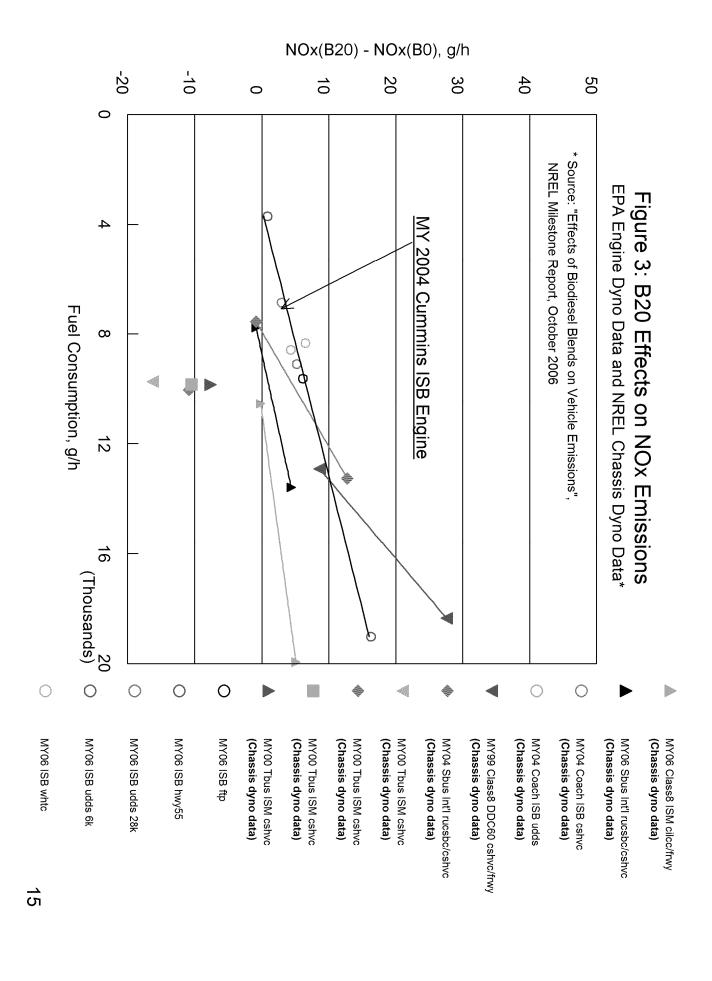
Agriculture, Construction and Mining Sectors Nonroad Diesel PM Inventory

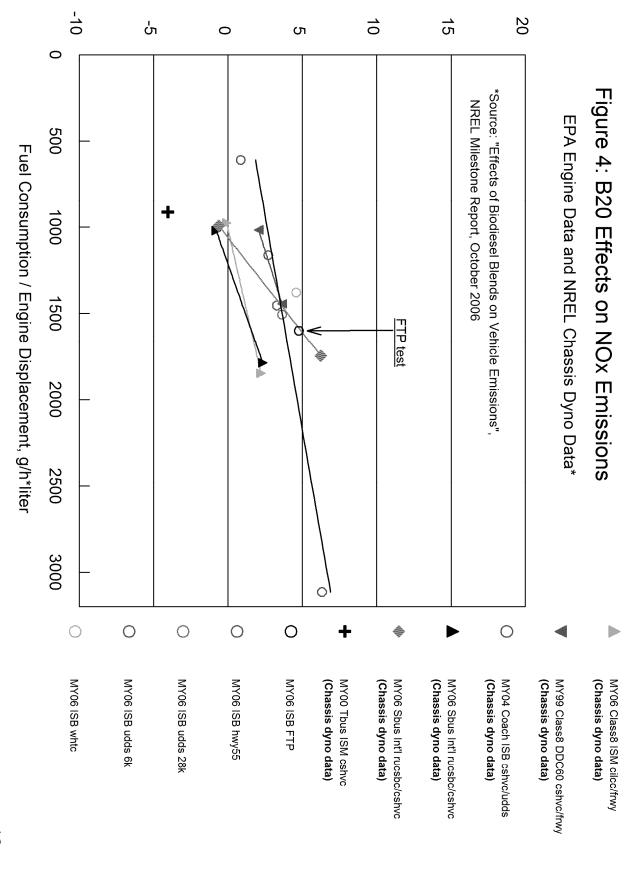
ĺ					
	2011 - 2012	15.8	14.6	22.4	Total:
	2006 - 2010	1.6	1.5	1.2	2006 - 2007
	1997 - 2005	6.7	6.3	9.1	1997 - 2005
	pre -1997	7.6	6.8	12.1	pre -1997
C	1	175 - 300 HP	50 - 100 HP 100 - 175 HP 175 - 300 HF	50 - 100 HP	1
	MV Dariod		% Contribution		MV Dariod
			2007	20	

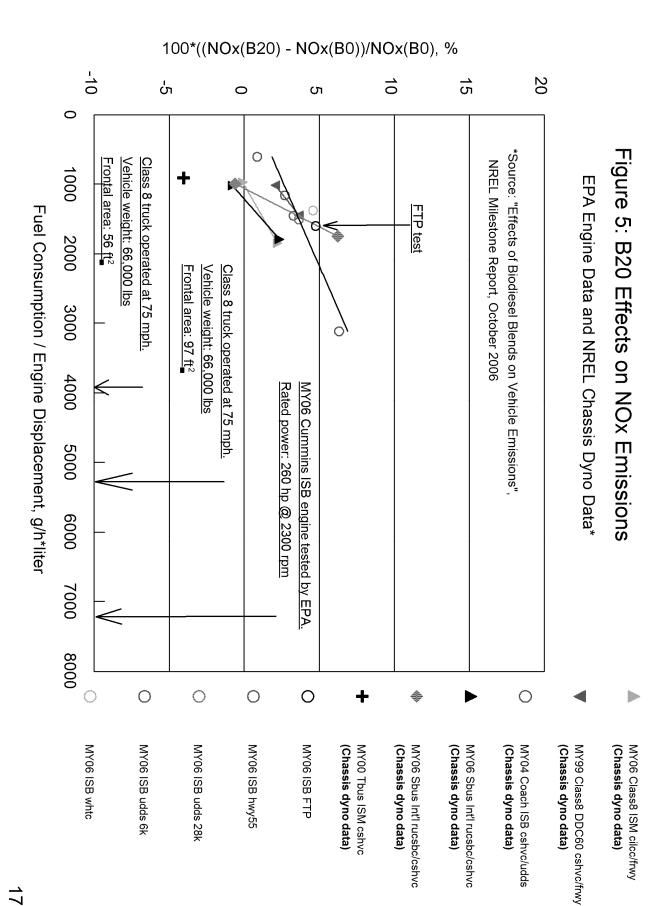
Total:	2011 - 2012	2006 - 2010	1997 - 2005	pre -1997	1	MV Dariad	
24.6	1.2	4.8	9.8	8.7	50 - 100 HP		20
16.1	1.2	5.5	5.4	4.0	50 - 100 HP 100 - 175 HP 175 - 300 HF	% Contribution	2012
14.3	0.2	4.9	5.1	4.2	175 - 300 HP	_	

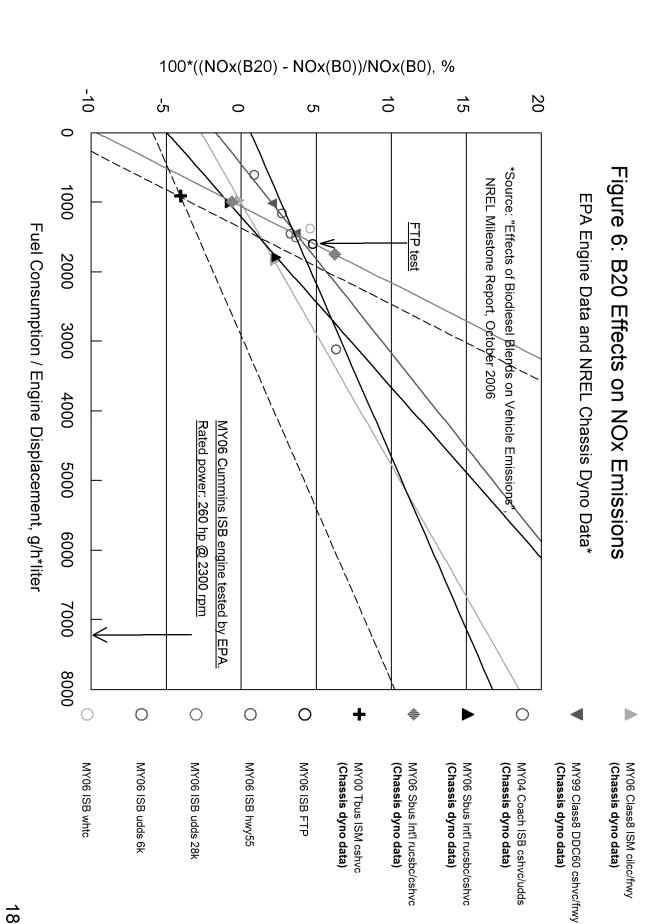
13.0	16.5	26.7	Total:
0.5	2.3	2.3	2011 - 2017
5.6	6.8	7.1	2006 - 2010
4.1	4.8	10.7	1997 - 2005
2.8	2.5	6.7	pre -1997
175 - 300 HP	50 - 100 HP 100 - 175 HP 175 - 300 HP	50 - 100 HP	100
	% Contribution		MV Dariod
	2017	2(

Emissions Control Technology


HD Highway Diesel Engines	iesel Engines
Pre - 1994	Baseline
1994 - 2001	High pressure FIE, combustion system enhancements, electronic engine control, aftercooling
2002 - 2006	EGR, Acert
2007 - 2009	EGR, PM trap
2010 +	EGR, PM trap + (LNT or urea SCR or ?


Emissions Control Technology (Cont'd)


EGR, PM trap + (LNT or ?)	Tier 4 2011 +	Tier 4 2012 +	Tier 4 2012 +
EGR, Acert	Tier 3 2006 - 2010	Tier 3 2007 - 2011	Tier 3 2008 – 2011 or skip to Tier 4
Combustion System enhancements	Tier 1/Tier 2 1996 - 2005	Tier 1/Tier 2 1997 - 2006	Tier 1/Tier 2 1998 - 2007
Baseline	pre - 1996	pre - 1997	pre - 1998
	175 – 300 hp	50 - 100 hp 100 - 175 hp 175 - 300 hp	50 – 100 hp
Technology	Engines	50 – 300 hp Nonroad Engines	50 – 300


Test Engines and Vehicles

- Test engines and vehicles to represent in-use fleet
- Past and state-of-the-art technology
- MY 2010+ technology prototypes may not be available for testing in this program or representative of future production
- Both highway and nonroad
- Focus on Class 6&7 and Class 8 highway engines
- engines Include 50-300 HP nonroad agricultural, construction and mining
- Include LD vehicles
- Selection of individual test engines and vehicles based on production volume, diversified to include multiple manufacturers
- Technologies to include: Non-EGR, Acert, EGR, EGR/PM trap, urea SCR (LD only), NOx trap, other?

Number of Test Engines

The required number of test engines was estimated as follows:

- EPA NVFEL engine data* and NREL chassis dyno data** generated on B20 were utilized as the basis of analysis
- dividing them by engine displacement (Figures 4 and 5) Fuel consumption rates for each engine were normalized by
- NOx emission rates for each engine were normalized by expressing them in % (Figures 4 and 5)
- The resulting $\%\Delta NOx = f(fuel consumption per unit displacement) relationships were used in further analysis, assuming they were linear over the range of interest (Figure 6)$
- was defined by the highest and lowest slopes observed in the data For transit buses tested by NREL, the range of positive responses

^{*} Preliminary Biodiesel Investigation, December 2006/January 2007

^{**} Source: "Effects of Biodiesel Blends on Vehicle Emissions", NREL Milestone Report, October 2006

Number of Test Engines (Cont'd)

- $\%\Delta NOx = f(fuel consumption per unit displacement) samples of various sizes (9 30)$ Monte Carlo simulations were performed to generate multiple
- For each sample size, the results of the simulations were regressed to produce a single trend line representing the aggregate effect
- Tests were performed to answer the following questions:
- Is the aggregate slope significantly different from 0?
- Results of simulations are statistically significant, even for the smallest sample size considered
- Is the %∆NOx for the FTP cycle statistically different from 0?
- This test is the limiting factor in estimating the required number of test
- The results of this test were presented in terms of the following risks:
- False positive: We conclude that $\% \triangle NOx$ for the FTP cycle is statistically different from 0 when it is not
- False negative: We conclude that %∆NOx for the FTP cycle is not statistically different from 0 when it is

10%	5%	Positive*	False	Risk of
40%	60%	engines	9	
35%	50%	engines	15	Risk o
13%	20%	engines	18	Risk of False Nega
5%	8%	engines	21	ative**
1%	3%	engines	30	

Recommendation: Test a minimum of 18 engines to limit the risk of false positive to 10% and the risk of false negative to 13%

^{*} Risk of false positive assumes that %∆NOx ≤ 2.0% or ≥ -2.0% (Two-tailed test)

^{**} Risk of false negative assumes that %∆NOx ≥ 2.0% or ≤ -2.0% (Two-tailed test)

Test Engines/Vehicles by Technology

ДН	HD Highway Engines	es	50 – 300 HP Nonroad Engines	P Nonroad ines	LD Vehicles	hicles
Emissions Control	# of Test Engines	Engines	Emissions	# of Test	Emissions	# of Test
Technology (MY)	Class 6&7	Class 8	Control Technology	Engines	Control Technology	Engines
1994 - 2001	ယ *	ယ *	Tier 1/Tier 2	_		
2002 - 2006	ယ *	ω *	Tier 3	2 (incl. one 50-100 HP engine)		
2007 – 2009 (PM traps)	3* (incl. Cummins LNT)	ယ *				
2010 + (PM traps; LNTs or urea SCR or ?)	-	-	_		Tier 2	3 (incl. urea SCR and LNT)

and models will be defined in consultation with engine manufacturers 22 * The actual number of engines in each category and selection of makes

Test Engines/Vehicles

errect Eighteen highway engines needed to define the biodiesel NOx

- This number of engines needed to optimize experimental design
- Maximize likelihood of successful outcome and minimize test time and cost
- Focus on MY 1994 through 2009 engines
- Use remanufactured MY 1994 2001 engines
- Consider use of late MY engines tested in CRC ACES Program

Tier 1/Tier 2 and $\underline{\sf two}$ Tier 3 nonroad engines

- NOx effects expected to be comparable to highway engines equipped with similar emissions control technology
- PM emissions will likely not be comparable to highway engine results in transient tests
- apply them to nonroad engines, <u>unless testing of the three nonroad engines</u> Expect to extrapolate biodiesel emissions effects from highway engines and indicates otherwise

Three Tier 2 LD test vehicles

- -| | |
- Urea SCR
- Other?

Test Cycles and Test Replicates

- The number of test cycles to be used in this program was established using the following criteria:
- f(ACP)* relationship A minimum of 3 test cycles are required to test linearity of the $\triangle NOx =$
- A maximum of 4 transient test cycles can be completed in an engine test cell on 2 fuels (each) in the course of a single day
- $\triangle NOx = f(ACP)$ regressions at p ≤ 0.05 minimum sample size needed to preserve statistical significance of The required number of test replicates was determined as the
- basis for analysis Utilized test data generated recently by EPA NVFEL and NREL** as
- Assumptions:
- Biodiesel effect on % change in NOx emissions does not vary with emissions control technology
- For any test cycle, the variability (standard deviation) of NOx emission results is the same for 2004 and 2007 MY HD Diesel engines
- Biodiesel effect on NOx is directly proportional to BXX level

^{*} ACP: Average Cycle Power

^{** &}quot;Effects of Biodiesel Blends on Vehicle Emissions", NREL Milestone Report, October 2006

Test Cycles and Test Replicates (Cont'd)

The analysis:

- Using EPA NVFEL data, slopes of ∆NOx = F(ACP) relationships were calculated for 3 test cycles (UDDS 6k, FTP and HWY55) and 4 test cycles (UDDS 6k, WHTP, FTP and HWY55)
- 2, 3 or 4 observations were sampled at random from B0 and B20 test replicates for each test cycle, for a total of 7 sets
- observations for each test cycle and each of seven sets B0 observations were averaged and subtracted from B20
- and 4-test cycle cases and their statistical significance determined at $p \le 0.05$ level Seven $\triangle NOx = f(ACP)$ regressions were defined both for the 3-
- sufficient for use in this program if all seven regressions were statistically significant The number of test cycles and replicates was deemed
- This procedure was repeated for slopes adjusted to account for engine to engine variability and changes in NOx standards

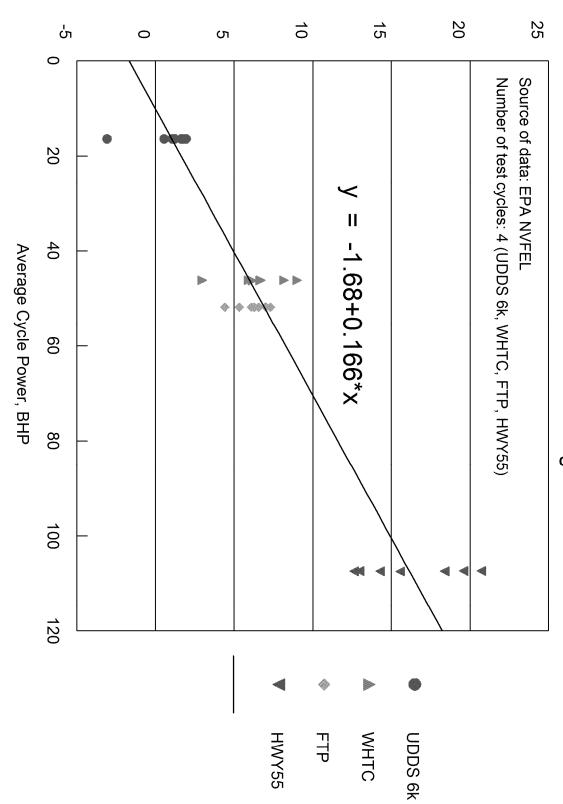


Figure 7: B20 Effects on NOx Emissions MY 2006 Cummins ISB Engine

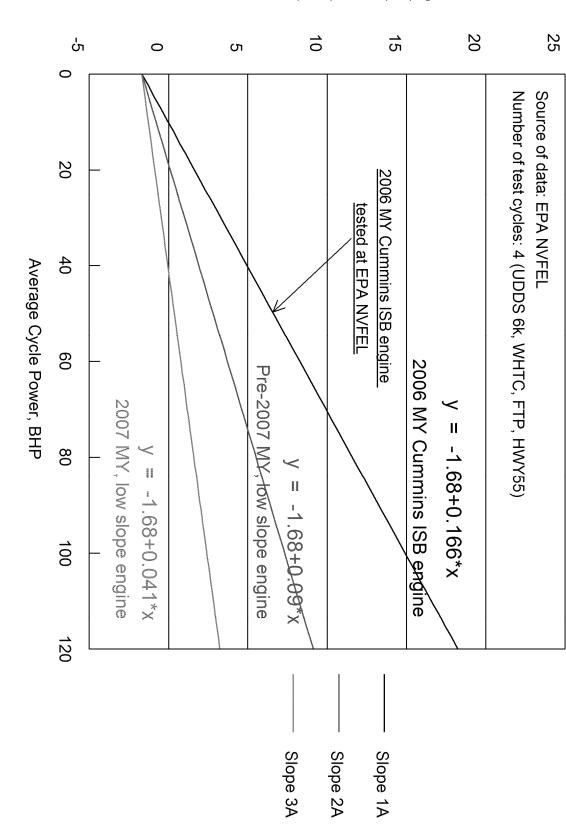


Figure 8: B20 Effects on NOx Emissions

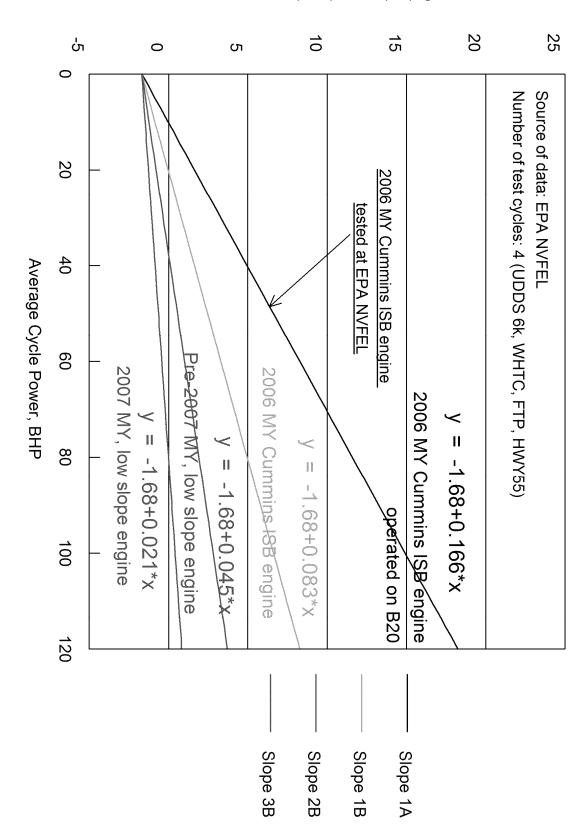
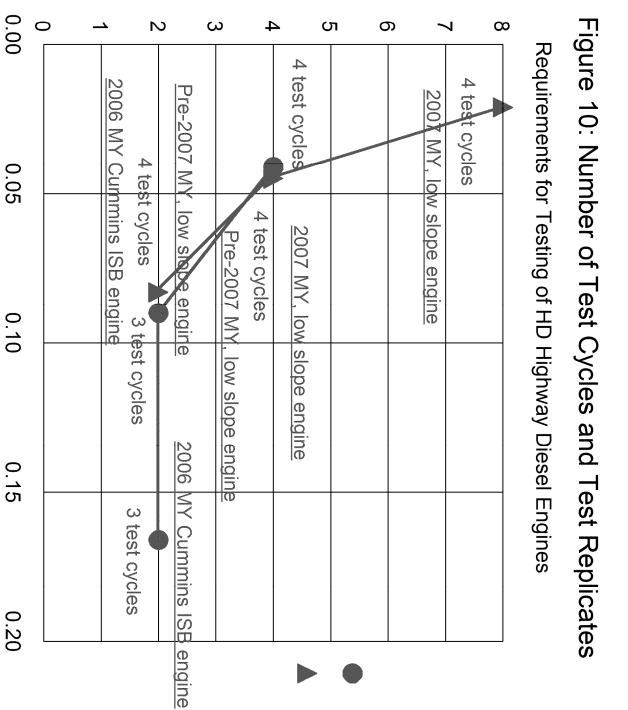


Figure 9: B10 Effects on NOx Emissions


Test Cycles and Test Replicates (Cont'd)

Slopes used in regression analysis:

- engine operated on B20 (0.166) Slope 1A: Based on EPA NVFEL data for 2006 MY Cummins ISB
- (0.166(1/1.85) = 0.090)Slope 2A: Lowest slope found in NREL B20 data set*
- exhaust emission standards (0.166(1/1.85)(1.1/2.4) = 0.041)Slope 3A: Lowest NREL slope adjusted to account for 2007
- instead of B20 (0.083) Slope 1B: Slope 1A halved to account for engine operation on B10
- instead of B20 (0.045) Slope 2B: Slope 2A halved to account for engine operation on B10
- Slope 3B: Slope 3A halved to account for engine operation on B10 instead of B20 (0.021)

^{*} Source: "Effects of Biodiesel Blends on Vehicle Emissions", NREL Milestone Report, October 2006

Required Number of Replicates

B10

B20

Slope of Delta NOx = f(ACP) Relationship

Test Cycles and Test Replicates (Cont'd)

Requirements for Testing of HD Highway Diesel Engines

2010+ MY	YM 2002	Pre-2007 MY	Emissions Control Technology
Need (4	4	Number of Test Cycles
Need OEM input to pro	+8	4	B10 Number of Test Replicates
produce (4	Min. 3	Number of Test Cycles
oduce estimates	4	2	Number of Test Replicates

- effect on the size of the test program Technical Subcommittee decided to drop B10 due to its disproportionate
- demonstrated in separate tests Linearity of biodiesel impact on NOx emissions below B20 will be

Test Cycles and Test Replicates (Cont'd)

Recommended number of test cycles:

- 4 test cycles for highway and nonroad engines
- 4 test cycles can be completed on a fuel in the course of ½ day with minimal effect on cost vs. 3 test cycles
- 3 test cycles for Tier 2 LD vehicles
- A minimum of 3 test cycles are needed to test linearity of the Delta NOx = f(ACP) relationship

Recommended number of test replicates:

- 3 test replicates for pre-2007 MY highway diesel engines and nonroad engines equipped with similar emissions control technology
- Number of replicates was increased from 2 to 3 to improve robustness of test data (minimize the effect of mild outliers)
- 4 test replicates for 2007-2009 MY highway diesel engines and nonroad engines equipped with similar emissions control technology
- ? test replicates for Tier 2 LD vehicles (OEM input required)

Specific Test Cycles

- predominantly on hot test cycles: Testing of highway and nonroad engines to be based
- Minimizes test time and cost
- However, cold test cycles will be performed as warm-up cycles to generate additional data
- LD vehicles to be tested per standard procedures
- Highway engines:

 UDDS 6k
- FTP
- operation Test cycle (to be defined); ACP equivalent to 75 mph truck
- and the 75 mph cycle Test cycle (to be defined) evenly spaced between the FTP

Specific Test Cycles (Cont'd)

Nonroad engines: - UDDS 6k

- NRTC
- Test cycle (to be defined) typical of a highway engine of same power rating scaled to ACP level equivalent to 75 mph truck operation
- Test cycle (to be defined), intermediate ACP

LD vehicles:

- FTP
- CARB Unified Cycle
- US06

- The most extensive assessment of base fuel effects on biodiesel NOx impacts available to date is based on the 2002 EPA study:
- "A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions", EPA420-P-02-001, October 2002
- This EPA study divided base fuels into "clean", "average" and "dirty"
- No base fuels were assigned to "dirty" category
- Base fuels were considered "clean" if they conformed to requirements for CA diesel fuel or met all of the following conditions:
- Cetane number > 52
- Total aromatic content < 25%
- Specific gravity < 0.84
- All other fuels were assigned to "average" category
- impact on the correlation between biodiesel concentration and emissions" In the 2002 EPA study, the base fuel was shown to "have significant
- Most recent technical publications support conclusions of the 2002 EPA study

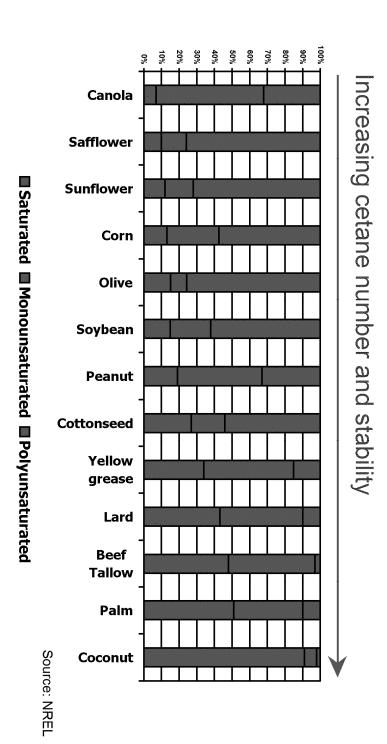
Delta NOx, % 5 25 30 20 6 0 Ŋ 0 Emissions", EPA420-P-02-001, October 2002 * "A Comprehensive Analysis of Biodiesel Impacts on Exhaust "Average" base fuel "Clean" base fuel 20 EPA Model* 40 60 80

Figure 11: Base Fuel Effects on Biodiesel NOx Impacts

100

Biodiesel Content, %v

Base Fuels (Cont'd)


- Base fuels to cover cetane number, density and aromatic content ranges typical of U.S. No. 2 diesel fuel
- Changes in mono-, poly- and total aromatic content to be directly linked to changes in density
- Base fuel property range assumptions will be updated based on winter 2006/2007 diesel fuel quality surveys
- One of the base fuels will be a "typical" CARB diesel fuel
- S ≤ 15 ppm
- T90 to be controlled within a predefined range, e.g. 590 610 °F
- Base fuels must meet D975 requirements

Base Fuels (Cont'd)

- Base fuels must not contain any cetane improvers
- ~75% of U.S. diesel fuel contains no cetane improvers
- ~50% of CA diesel fuel contains no cetane improvers
- Wide variation in cetane improver impacts on NOx emissions from diesel engines operated on biodiesel fuels reported in technical literature
- Treat rates used in cetane improver/biodiesel studies are much higher than in market tuels
- separate investigation Clarification of cetane improver impacts in biodiesel fuels requires a
- mınımızed, e.g. lubricity improver The use of other performance additives in finished blends must be

Biodiesel Composition

- Composition mirrors the fatty acid content of the feedstock Animal fats, palm, coconut oils are more highly saturated
- higher CN, higher cloud point
- Fuels high in polyunsaturates are less stable

Biodiesels

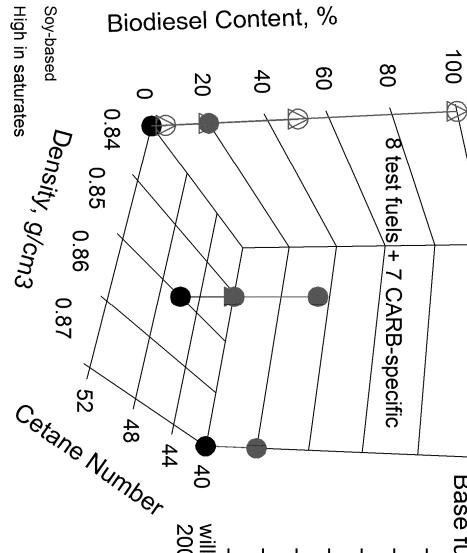
- Test two biodiesels spanning the composition/property scale, i.e.:
- Soy-derived
- Currently dominant in the U.S.
- High in unsaturates
- Animal fat-derived
- High in saturates
- Focus on soy-derived biodiesel
- Animal fat-based biodiesel will only be blended into one base fuel
- This approach will enable interpolation without excessively enlarging the test program
- Additional biodiesel(s) may be tested by CARB in 3 engines and 4 All biodiesels used in this program must meet the following vehicles requirements;
- D6751
- BQ9000
- Other?

Biodiesel Test Fuels

- Focus on B20 blends
- evaluated in a limited scope study, such as the following: Linearity of biodiesel impacts on NOx emissions below B20 may be
- Number of test engines: 1
- MY of test engine: 2002 2006
- Test cycle: High load cycle, such as HWY55, to increase the likelihood of achieving statistically significant results for the least amount of testing
- Base fuel: ULS "average" US diesel fuel
- Biodiesel: Soy-derived
- Biodiesel content levels investigated: B5, B10 and B20
- Estimated cost: \$70,000
- If significant nonlinearity is observed, additional testing can be added
- B5, B20, B50 and B100 blends will be tested by CARB in 3 engines and 4 vehicles

Biodiesel Test Fuels (Cont'd)

- B0 B20 blends must meet D975 requirements
- Per ASTM discussions of proposed B20 specification, D975 max. T90 specification may be exceeded by 5°C
- S ≤ 15 ppm
- The use of performance additives in biodiesel fuels must be kept to a minimum
- Additional issues requiring resolution:
- Biodiesel fuel storage
- Storage stability control
- Monitoring of biodiesel fuel quality in storage


$\triangleright \bigcirc \bullet \blacktriangleright \bullet$

Base fuel

High in saturates, tested in CARB engines/vehicles only

Soy-based, tested in CARB engines/vehicles only

Fuel Matrix

Base fuel property ranges:

- Density: 0.83 0.87 g/cm3
- Cetane number: 40 52
- Monoaromatics: 18 31%
- Polyaromatics: 2 9%
- Total Aromatics: 20 40% T90: 590 – 610 °F
- Base fuel property ranges will be updated based on winter 2006/2007 diesel fuel surveys

Measured Exhaust Constituents

- THC, NMHC, CO, NO₂, NO_x, PM, SOF (Soxhlet)
- . CO₂, N₂O, NH₄
- C1 C12 unregulated emissions
- In-depth characterization of unregulated emissions proposed CARB Program conducted on a limited set of samples, per
- Second-by-second THC, NMHC, CO, NO₂, NO_x

Example: 2007-2009 MY HD Diesel Engine Emissions Test Sequence

Number of test fuels in a set:

3 (one B0 and two B20 fuels)

Number of test replicates per fuel: 4

	١	ა			Dave	Rasso		Fuel	Day
D	С	В	Α	D	С	В	Α	Cycle	ıy 1
	c	ည			١	၁		Fuel	Day
D	С	В	А	D	С	В	А	Cycle	y 2
	במטמ	Rassa			·	ມ		Fuel	Da
D	С	В	Α	D	С	В	Α	Cycle)ay 3
	١	ა			מטמ	Rassa		Fuel	Da
D	С	В	Α	D	С	В	Α	Cycle)ay 4
	c	သ			١	၁		Fuel	Da
D	С	В	А	D	С	В	А	Cycle)ay 5
	Dasc	D S S S S			C	ည		Fuel	Da
D	С	В	Α	D	С	В	Α	Cycle)ay 6

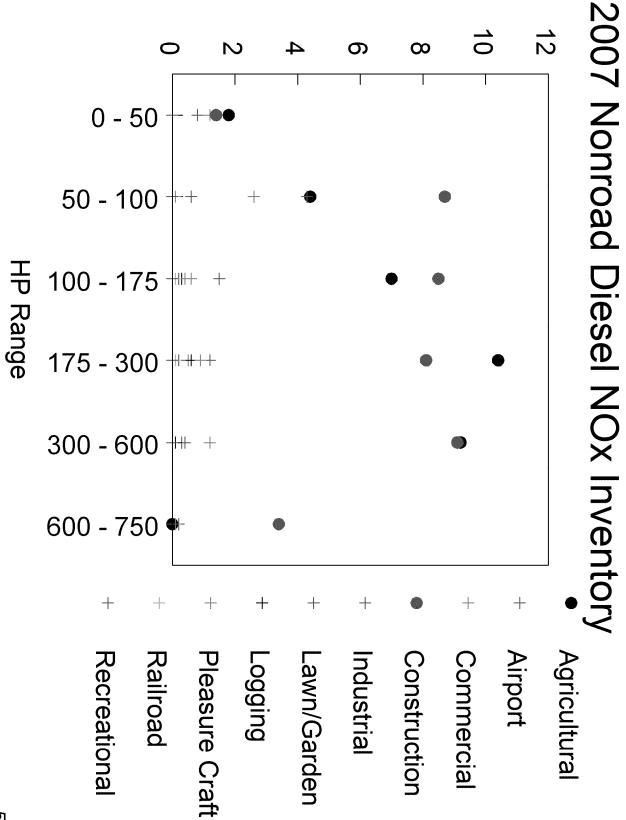
- 4 test cycles
- Test cycles performed in random order
- Sequence takes into account day-to-day and AM/PM variability
- Time still available to repeat a cycle, if test quality criteria not met

Program Cost Estimate

		CABB	Da a a	D S S S	Program
	Vehicles	Engines	LD Vehicles	Engines (includes 3 nonroad)	Test Engines/Vehicles
	4	3	3	21	Cost of Number of Exhaust Engines/ Emissior Vehicles Testing, \$M
					Cost of Exhaust Emission Testing,
			×		Cost of Unregulated Emission Measurements, \$M
			 		Fuel Cost, \$M
Gre		(\Box		Statistical Analysis, \$M
Grand Total:					Engine and Vehicle Cost, \$M
Ex. 4 - CBI					Total, \$M

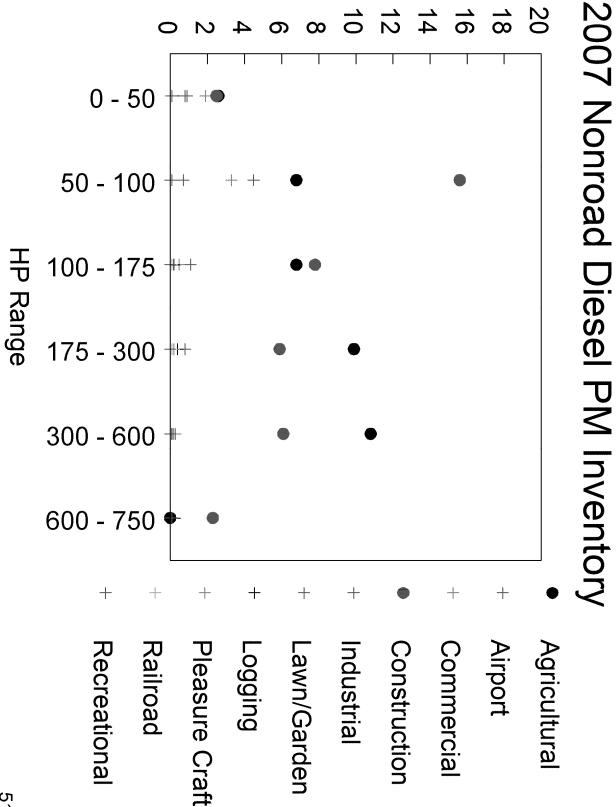
	All Stakeholders	API	AAM	EMA	CARB	NBB	EPA**	Stakeholder C
	0							Cash Contributions, \$M
Total Needed:	0							In-Kind Contributions, \$M
5.11	0							Total Contributions, \$M

** EPA testing 3 engines


Shortfall:

(5.11)

Back-up Slides


Diesel Transit, Urban and School Buses	BUSES
Class 8a and 8b Heavy-Duty Diesel Vehicles (33,001- >60,000 lbs. GVWR)	HHDDV
Class 6 and 7 Heavy-Duty Diesel Vehicles (19,501-33,000 lbs. GVWR)	MHDDV
Class 3, 4 and 5 Heavy-Duty Diesel Vehicles (10,001-19,500 lbs. GVWR)	LHDDV
Class 2b Heavy-Duty Diesel Vehicles (8501-10,000 lbs. GVWR)	2BHDDV
Light-Duty Diesel Trucks 1, 2, 3 and 4 (0-8,500 lbs. GVWR)	LDDT
Light-Duty Diesel Vehicles (Passenger Cars)	LDDV
Vehicle Class Description	Vehicle Class

% Contribution

50

% Contribution

<u>5</u>

EPA's Preliminary Investigation

- Objective: Elucidate the effect of test cycle and average cycle load on biodiesel NOx effect in order to guide the development of the collaborative program
- Conducted in December 2006 and January 2007
- Test engine: MY 2006 Cummins ISB
- Base fuel: ULS Phillips certification diesel
- Biodiesel blendstock: Soy-derived
- Biodiesel blend levels: B20 and B50

Transient Engine Test Cycles

- HD FTP
- Urban Dynamometer Driving Schedule (UDDS, two load levels)
- CARB highway cycle developed for use in CRC program E-55 (HWY55)
- World Harmonized Test Cycle (WHTC)
- Test laboratory: NVFEL

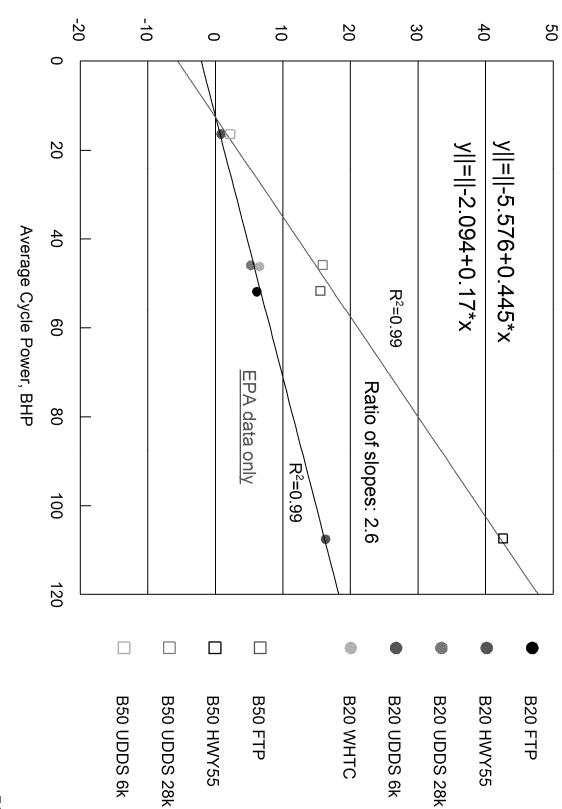
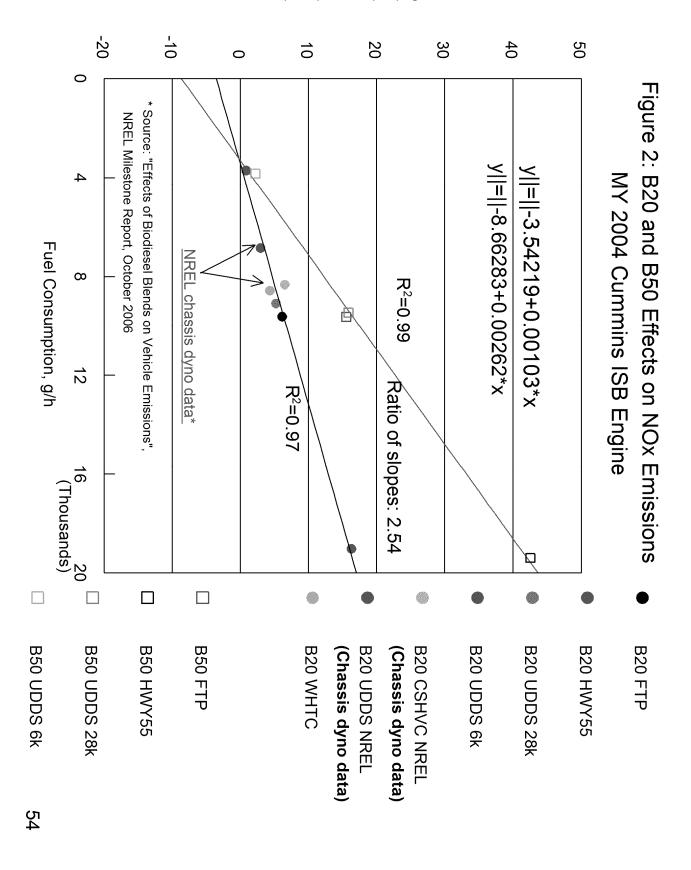
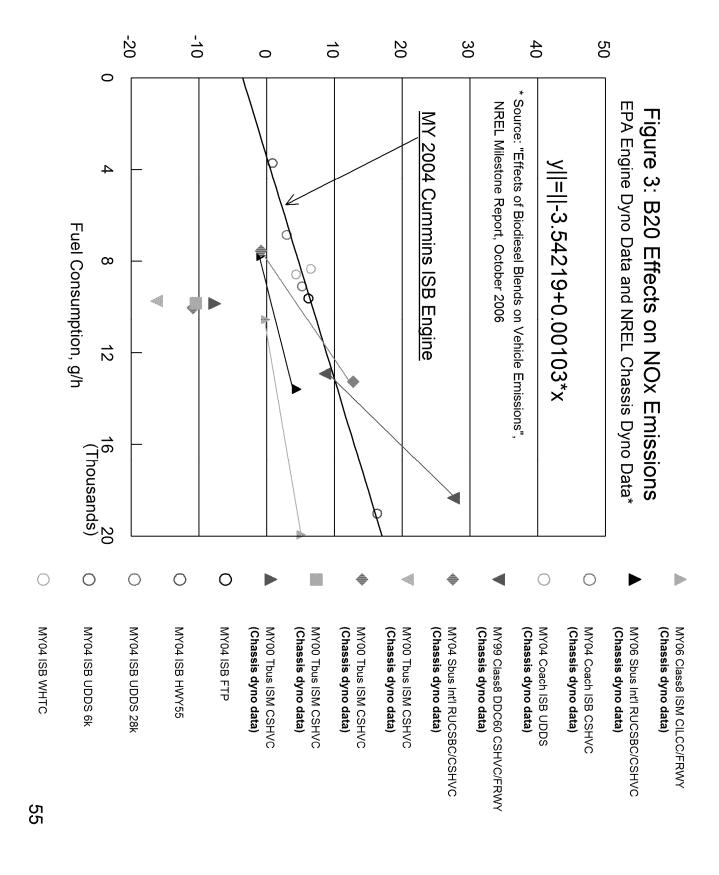




Figure 1: B20 and B50 Effects on NOx Emissions MY 2004 Cummins ISB Engine

53

EPA's Preliminary Investigation

(Cont'd)

Conclusions:

- Biodiesel effect on NOx emissions was directly proportional to:
- Average cycle load
- Biodiesel content (Tested at B0, B20 and B50 levels)
- The effect of "test cycle" on NOx emissions was relatively
- NREL chassis testing in line with EPA engine tests
- Cummins ISB engine by the EPA and chassis test data generated by NREL Conclusions based on exhaust emission testing of one
- observed effects Testing as a part of a broader program may confirm the